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Abstract

Purpose of review—To summarize the state of chronic, treated HIV infection and its 

contribution to accelerated aging, and to evaluate recent research relevant to the study and 

treatment of aging and senescence.

Recent findings—Chronic treated HIV-1 infection is associated with significant risk of end-

organ impairment, non-AIDS associated malignancies, and accelerated physiologic aging. 

Coupled with the chronologic aging of the HIV-1-positive population, the development of 

therapies that target these processes is of great clinical importance. Age-related diseases are partly 

the result of cellular senescence. Both immune and non-immune cell subsets are thought to 

mediate this senescent phenotype, a state of stable cell cycle arrest characterized by sustained 

release of pro-inflammatory mediators. Recent research in the field of aging has identified a 

number of ‘senotherapeutics’ to combat aging-related diseases, pharmacologic agents that act 

either by selectively promoting the death of senescent cells (‘senolytics’) or modifying senescent 

phenotype (‘senomorphics’).

Summary—Senescence is a hallmark of aging-related diseases that is characterized by stable cell 

cycle arrest and chronic inflammation. Chronic HIV-1 infection predisposes patients to aging-

related illnesses and is similarly marked by a senescence-like phenotype. A better understanding 

of the role of HIV-1 in aging will inform the development of therapeutics aimed at eliminating 

senescent cells that drive accelerated physiologic aging.
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Introduction

Combination antiretroviral therapy (ART) has transformed HIV-1 infection from a lethal 

disease into a manageable chronic illness for those with access to therapy (1, 2). One result 

of this remarkable transformation is that a majority of people living with HIV-1 infection 

(PLWH) in the United States are now over age 50, a phenomenon that has been termed the 

“graying” of the HIV-1 epidemic (3). Individuals living with treated HIV-1 infection are at 

increased risk of aging-related diseases (4). This phenotype of chronic HIV-1 infection, 
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often characterized as accelerated physiologic aging, is likely to exacerbate the clinical 

consequences of chronologic aging in this population.

Aging-related illnesses are driven in large part by cellular senescence, characterized by 

stable growth arrest and secretion of pro-inflammatory mediators (known as the Senescence-

Associated Secretory Phenotype or SASP) (5, 6). While senescence is critical for preventing 

proliferation of damaged or pre-cancerous cells, it also leads to the persistence of 

inflammatory cells that are closely associated with diseases of aging (7, 8). Senescent cells 

are dependent on a variety of factors for survival that can be counteracted by a growing 

number of pharmacologic agents. These drugs, termed “senotherapeutics”, range in function 

from altering inflammatory profiles of senescent cells (“senomorphics”) to inducing targeted 

cell death (“senolytics”) (9). In this review, we highlight the current understanding of HIV 

and aging, emerging discoveries in aging research that directly address cellular senescence, 

and identify the potential for senotherapeutics to play a role in the context of chronic, treated 

HIV-1 infection.

Aging and HIV-1 Infection

Suppression of viremia by ART eliminates the development of opportunistic infections, 

however the immune system in aviremic HIV-1-infected individuals on ART reflects a state 

of persistent immune activation (10–12). T cell markers of activation (HLA-DR, CD38) and 

exhaustion (PD-1, CD57) are significantly elevated in patients with treated HIV-1 infection 

compared to uninfected individuals (13). There is a marked decrease in naïve CD4+ and 

CD8+ cells, an inverted CD4:CD8 cell ratio, increased frequency of activated monocytes, 

and increased pro-inflammatory cytokines including TNFα, IL-6 and IFNγ (12). 

Biomarkers of inflammation including C-reactive protein (CRP), d-dimer and soluble CD14 

(sCD14) are all elevated in the plasma of HIV-1 infected patients on ART (14). These 

biomarkers of cellular activation and exhaustion are very similar to the phenotype observed 

in ‘inflamm-aging’ (15–17). Evidence for a direct link between senescence and HIV-1 

infection has been demonstrated through evaluation of p16INK4a, a biomarker of cellular 

senescence. In PBMCs isolated from ART-suppressed patients, p16INK4a levels are 

significantly elevated when compared to healthy, age-matched controls (18, 19). Thus, 

immune cells are important contributors to age-related diseases, and may themselves 

contribute to chronic inflammation through the process known as cellular senescence.

The cumulative effects of chronic inflammation contribute to a clinical syndrome known as 

frailty. Frail patients are at high risk of adverse clinical outcomes from aging-related 

conditions, and frailty is common among people living with treated HIV-1 infection (20, 21). 

As the population of PLWH continues to age, the prevalence of frailty in this population is 

increasing. The presence of frailty in PLWH has been linked to elevated levels of circulating 

pro-inflammatory mediators, such as IL-6 and CRP, which are highly associated with aging-

related illness. Frailty is increasingly being considered an important HIV-associated, non-

AIDS complication in PLWH (22–25), and serves as an independent predictor of the 

development of cardiovascular disease, diabetes mellitus, falls and mortality (24, 25).
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The risk of developing cardiovascular disease (CVD), already the number one cause of 

mortality among the US population (26), is markedly elevated among PLWH (27–29) 

despite the ability of ART to suppress viral replication (30–32). There are mechanistic 

parallels between the increased CVD risk observed in aging and HIV-1 infection, and CVD 

is now the leading cause of morbidity and mortality in PLWH (33). Endothelial dysfunction 

is a major pathophysiologic driver of age-related CVD (34), which in turn is tightly 

associated with chronic immune activation (35–38). HIV-1-infected individuals on stable 

ART experience a state of chronic immune activation (14, 39), that has been shown to be 

associated with carotid plaque formation (40), carotid artery stiffness (41, 42) and arterial 

dysfunction (43, 44). The association between treated HIV-1 infection and CVD is 

independent of age, sex or tobacco use (27, 29).

Neurocognitive impairment is associated with both treated and untreated HIV-1 infection, 

and encompasses a spectrum of HIV-1-associated neurocognitive diseases (HAND) ranging 

in severity from dementia to more subtle loss of concentration, attention, and motor control 

(45, 46). While the more severe manifestations of AIDS dementia complex have improved 

dramatically with virologic control on ART, mild neurocognitive disorder and asymptomatic 

neurocognitive impairment persist and are now responsible for the majority of HAND (47). 

Approximately half of all PLWH experience some form of neurocognitive impairment, and 

it has been hypothesized that persistent inflammation despite ART or damage sustained prior 

to initiating ART may be responsible (48). This hypothesis is supported by the fact that in 

untreated HIV-1 infection, severity of dementia correlates not with the plasma viral load but 

rather with the presence of inflammatory markers and HIV-1 RNA in the CSF (47, 49, 50). 

Recent findings implicate macrophages as a cause of persistent central nervous system 

inflammation (51, 52), which helps explain the increased susceptibility of PLWH to 

microvascular disease, cognitive impairment, and frailty (53).

Can the physiologic aging phenotype in PLWH be ascribed to the concomitant chronological 

aging of this population? Immune activation, exhaustion and senescence in perinatally 

infected children provides strong evidence that the phenotype of advanced immunologic 

aging observed in chronic treated HIV-1 infection is largely uncoupled from chronologic age 

(54). Pathogenic age-associated changes in bone metabolism (55), renal (56, 57) and 

endocrine function (58) have all been well described in this population. Increased risk of 

non-AIDS related malignancies (59, 60), neuro-psychiatric conditions (61, 62) and 

premature cardiovascular disease (63, 64) in perinatally infected children and adolescents 

mirror observations in chronically infected adults (65). These risks are most pronounced in 

children and adolescents not taking ART, but remain significant despite viral suppression 

(66).

The drivers of the immune senescence of HIV-1

Untreated HIV-1 infection has long been recognized to result in persistent immune activation 

and a rapid-aging phenotype in CD4+ and CD8+ T cells (67), and myeloid cells (68). While 

ART is effective at suppressing virus replication, inflammation is known to persist (69) 

(Figure 1). The mechanisms governing chronic inflammation despite ART remain unclear, 

however a correlation exists between increased time-to-ART (or time with uncontrolled viral 
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proliferation) and increased post-ART inflammation (70, 71), suggesting that immunologic 

events occurring during the period of active viral replication prior to ART initiation dictate 

inflammatory outcomes long-term (72). This data is supported by the observation that elite 

controllers (EC), individuals who control HIV endogenously without ART, have lower levels 

of inflammatory markers than non-controllers (73). Further evidence demonstrating the 

ability of ART to reduce chronic, low-level inflammation and immune activation in ECs (74) 

supports a hypothesis in which HIV-associated inflammation is correlated with the degree of 

virologic control (75).

Despite the reduction in systemic inflammation after ART initiation (76), could years (or 

decades) of antiretroviral therapy contribute to the immune activation of treated HIV-1 

infection? Over a decade ago, a large retrospective analysis identified an association 

between abacavir and increased cardiovascular risk (77). This finding has been replicated 

prospectively (78), and evaluation of cells from individuals taking abacavir demonstrates 

platelet activation (79). This off-target effect may contribute to vascular inflammation, 

atherosclerotic plaque formation and cardiac ischemia. However, other mechanisms are 

possible as well (80). More recently, accumulating evidence suggests that integrase 

inhibitors cause significant weight gain relative to other ART classes (81, 82). Both the 

mechanisms and clinical consequences of ART-associated weight gain are unclear at present 

(83). Beyond antiretroviral drugs themselves, the risks of poly-pharmacy and attendant drug-

drug interactions among PLWH are increasing (84, 85). Despite the unquestioned benefit of 

ART on immune recovery, improvement in inflammatory markers and overall survival in 

PLWH, these are concerning signals of the cumulative effects of long-term ART that may 

contribute to the immune senescence of treated infection.

Comorbid conditions, particularly chronic viral co-infections, and chronic antigenic 

stimulation caused by microbial translocation from the gut appear to play important roles in 

immune senescence in PLWH. As reviewed by Dillon and Wilson in this issue, damage to 

the intestinal barrier is well-described in untreated HIV-1 infection (86) and results in 

translocation and systemic exposure to commensal bacteria, fungi, and viruses. The 

restoration of the peripheral T cell count in PLWH on ART is not accompanied by 

significant improvement in intestinal barrier integrity (87, 88), resulting in continued 

antigenic exposure, immune stimulation and exhaustion (89). Recent research suggests that 

this phenomenon may not be unique to HIV-1, but rather an acceleration of a pro-

inflammatory process that has been associated with aging (90). Among PLWH, Hepatitis C 

virus (HCV) co-infection has been shown to result in activation and exhaustion of 

circulating CD8+ T cells (91, 92) and NK cell dysfunction (93). Chronic infection with 

herpesviruses, including Epstein-Barr virus (EBV) and cytomegalovirus (CMV) have been 

closely associated with pathologic aging (94), and are frequent co-infections among PLWH 

(95). In a recent study of HIV-1-positive individuals on ART, the degree of T cell immune 

responses to CMV demonstrated a strong positive correlation with markers of systemic 

inflammation (21). The immune response to chronic CMV infection has been implicated in 

the development of immune senescence in both aging and HIV-1, though the specific 

mechanisms (and means to address them) remain to be fully elucidated (96).
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The relationship between HIV-1 persistence despite ART (the HIV-1 reservoir) and the 

chronic immune activation and exhaustion of treated HIV-1 infection is not well understood. 

While reservoir size in T cells does not appear to be associated with systemic markers of 

inflammation (72), T cells are not alone in their ability to harbor HIV-1 despite ART (97, 

98). Tissue macrophages are viral targets as well, and these cells are resistant to viral-

induced cytopathic effects (99). The inflammatory profile of HIV-1-infected macrophages 

has been well-described ((100, 101) and reviewed in (102)). Recent evidence has shown that 

in vitro HIV-1 infection can induce senescence in microglia, suggesting that the virus itself 

may play an important and direct role in driving HIV-related comorbidities often associated 

with aging, particularly within the CNS (103). Monocyte activation and dysfunction is 

present in PLWH compared to HIV-negative controls and persists on ART (104). We have 

recently observed that HIV-1 infected macrophages develop a senescence-like phenotype, 

including depression of cell-cycle related genes concomitant with induction of SASP in both 

HIV-1 infected and bystander macrophages (unpublished data). Mounting evidence supports 

a role for macrophage-induced senescence in HIV-1 infection.

Cellular senescence as a driver of aging and aging-related diseases

Senescent cells are implicated as major drivers of aging-related diseases and frailty (105). 

Cellular senescence is characterized by stable cell cycle arrest, secretion of pro-

inflammatory, pro-apoptotic, pro-fibrotic compounds (SASP) and resistance to apoptosis 

(106, 107). Initial descriptions of cell senescence did not identify it as pathogenic, but rather 

as a physiologic cellular program that was associated with embryogenesis, wound healing 

and tissue repair and served to limit proliferation of damaged or pre-cancerous cells (108). 

With increasing age however, senescent cells accumulate in tissues, creating a micro-

environment that incites chronic immune activation and cell death among bystander cells, 

which in turn results in local or systemic dysfunction (109). Senescent smooth muscle and 

endothelial cells are present in blood vessels and atherosclerotic plaques and portend a risk 

of clinical cardiovascular disease (110, 111). Senescent astrocytes (112) and microglia (113) 

have been associated with the development of Alzheimer’s disease (114). Osteoarthritis, a 

chronic degenerative disease closely associated with aging, appears to be driven by 

senescent chondrocytes (115–117).

A mouse model in which senescent pre-adipocytes were infused into young syngeneic mice 

provides evidence of a causal role of senescent cells in aging-related disorders (118). Mice 

that received senescent cells developed dose-dependent, persistent deterioration of physical 

function relative to controls that received non-senescent pre-adipocytes, and demonstrated 

infiltration of senescent cells across multiple tissues. Smaller infusions of senescent cells 

into older mice resulted in significant decreases of both health- and life-span. In this model, 

senescent cells appear to be directly responsible for the observed pathogenic aging 

phenotype. Multiple lines of evidence now provide strong support for the hypothesis that 

cellular senescence is driving aging-related illness. Collectively, they raise a critical 

question: can these cells be targeted pharmacologically in order to ameliorate pathologic 

aging?
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Targeting cellular senescence

The discovery that senescent cells are sufficient to drive pathogenesis in a number of animal 

models of disease, accumulate in tissues with chronological aging, and correlate with 

disease progression in a variety of age-related human conditions has spurred efforts to 

identify pharmacologic strategies to target senescence. A murine aging model has 

demonstrated that targeting of senescent cells results in increased health- and life-span (8). 

This discovery has given rise to pharmacologic strategies to directly counteract senescence 

by either killing senescent cells (senolytics) or modifying their phenotype (senomorphics) 

(Table 1) (5, 105).

The efficacy of senotherapeutics has been based on a wide range of mouse and in vitro 

models of human disease (109, 119–135). The first human trial of senolytics tested a 

combination of dasatinib (a tyrosine kinase inhibitor or TKI) and quercetin (a plant flavanol 

that targets BCL-2, insulin / IGF-1, and HIF1-alpha) in patients with idiopathic pulmonary 

fibrosis, and demonstrated that these compounds were safe, well-tolerated, and associated 

with improved physical function (136). Led by studies showing efficacy in animal models of 

aging (137, 138), the Targeting Aging with Metformin (TAME) Trial will examine 

metformin as a novel senotherapeutic. This new and rapidly developing field is identifying 

compounds capable of directly targeting processes underlying cellular senescence, and in so 

doing, aging itself (139).

Treatment of HIV-related aging with senotherapeutics

Can the immune senescence of treated HIV-1 infection be modified pharmacologically? 

Several lines of inquiry, including ongoing early phase clinical trials, seek to answer this 

question. Quercetin and fisetin are naturally occurring flavonoids shown to have senolytic 

activity. Fisetin has shown promise in vitro, though the senolytic mechanism of action 

remains unclear (140, 141). One study has demonstrated an anti-inflammatory effect of 

fisetin on microglial cells in vitro, suggesting a potential role for this natural product in the 

treatment of neuro-inflammation (142). Quercetin has inhibitory activity against several 

cellular kinases, and demonstrated targeted killing of senescent pre-adipocytes in vitro 

(107). Quercetin has shown synergistic activity with dasatinib in vitro (105), and this 

combination represents the current intervention strategy for pilot senolytic clinical trials 

(136, 143). With regard to HIV-1 infection, quercetin may also exhibit neuroprotective 

effects. Quercetin reduced ART-induced neuro-inflammation in a mouse model (144), and 

reactivated latent HIV-1 in vitro using an immortalized cell line (145).

Navitoclax and venetoclax are pharmacologic antagonists of BCL-2, an anti-apoptosis 

protein upregulated in senescent cells (121, 146). These compounds were originally 

designed for treatment of cancers in which BCL-2 is over-expressed (147, 148). Currently, 

Venetoclax is FDA-approved for chronic lymphocytic leukemia and acute myeloid leukemia, 

and this family of compounds has been investigated for their potential role as senolytics 

(119, 149). In a promising set of studies, venetoclax was shown to block proliferation of 

latently infected cells (150) and selectively induce apoptosis of latently infected cells upon 

viral reactivation in vitro (151).
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The mechanistic target of rapamycin (mTOR) is a kinase active in innate and adaptive 

immune cells that governs cellular metabolism, growth and survival (152). While the mTOR 

inhibitor rapamycin is FDA-approved for chronic immunosuppression in organ transplant 

recipients, at lower dosing this drug has been shown to be immunostimulatory, boosting both 

anti-pathogen (153) and anti-tumor responses (154). Rapamycin is one of a few 

pharmacologic agents demonstrated to prolong the lifespan of a mammalian species (137, 

155), a result that has been in part attributed to improved effector cell responses (156). A 

clinical trial administering everolimus, a rapamycin analog, along with the seasonal 

influenza vaccine demonstrated improved vaccine responses among elderly participants 

(157). Rapamycin was recently shown to modulate T cell exhaustion markers and responses 

to IL-7 and IL-15 in vitro (158). HIV-1-positive kidney transplant recipients who were 

treated with rapamycin were found to have smaller HIV-1 reservoirs than those taking other 

immunomodulatory agents (159), suggesting a role of the mTOR pathway in regulating viral 

persistence (160), and prompting two pilot clinical trials to evaluate the role of mTOR 

inhibition on reservoir dynamics using rapamycin (NCT02440789) and everolimus 

(NCT024298699). While full results are pending, these lines of evidence identify mTOR 

signaling as a high-yield target to ameliorate the immunologic dysfunction of chronic, 

treated HIV-1 infection.

Ruxolitinib is a janus kinase (JAK) 1 and 2 inhibitor that is FDA-approved for treatment of 

myeloproliferative disorders and has shown senolytic activity in mouse models (161). 

Ruxolitinib blocked HIV-1 replication in macrophages and diminished HIV-1-induced 

encephalitis in a mouse model (162). The same group has recently shown similar results 

using a different JAK inhibitor, baricitinib (163). JAK inhibition appears to perturb reservoir 

persistence (164). A randomized phase 2 clinical trial has recently been completed in which 

60 participants living HIV-1 infection on ART received either ruxolitinib 10mg twice daily 

for five weeks (n=40) versus no treatment (n=20) [NCT02475655]. The drug was well 

tolerated and safe. IL-6 levels at the end of the intervention (week 5) compared to baseline 

were not significantly different in either group, though a statistically significant decrease in 

soluble CD14 was observed in the treatment group. Additional inflammatory, senescence or 

HIV-1 reservoir outcomes are not yet available, however these initial results show promise 

and future studies are warranted.

Panobinostat is a histone deacetylase inhibitor (HDACi) that is FDA-approved for the 

treatment of multiple myeloma (165). The senolytic activity of panobinostat is an area of 

active interest in oncology (166), particularly in the management of tumors that express 

senescence and anti-apoptotic markers (167). Histone deacetylation is a cellular mechanism 

for silencing gene transcription, and plays a role in HIV-1 proviral silencing (168). Several 

clinical trials have been conducted using HDAC inhibitors to perturb the HIV-1 latent 

reservoir in vivo (169, 170). In a sub-study of an HIV-1 eradication trial in which 

panobinostat was administered for eight weeks (171), c-reactive protein, IL-6 and circulating 

pro-inflammatory monocytes all significantly decreased at the end of the dosing period 

relative to baseline (172, 173). While HDAC inhibition appears to have a modest effect on 

reservoir perturbation, these drugs may play an important role in addressing HIV-1-induced 

senescence.
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Tyrosine kinase inhibitors have not been used to target inflammation or senescence in HIV-1 

infection in vivo, though pre-clinical evidence demonstrates promise. In vivo, the 

combination of dasatinib and quercetin decreased senescent cell burden in diabetic kidney 

disease (143) and improved physical function in patients with idiopathic pulmonary fibrosis 

(136). Dasatinib is known to inhibit proinflammatory functions of neutrophils as well as T 

cell activation and proliferation (174–177). We have recently shown that FDA-approved 

tyrosine kinase inhibitors including dasatinib enhances macrophage restriction of HIV-1 

infection through activation of the restriction factor SAMHD1 (178). The Coiras and Alcami 

laboratories have observed similar viral restriction in T cells exposed to tyrosine kinase 

inhibitors including dasatinib, using peripheral blood mononuclear cells (PBMCs) obtained 

from patients receiving tyrosine kinase inhibitors for chronic myelogenous leukemia or 

CML (179). Whether dasatinib (and other tyrosine kinase inhibitors) will be capable of 

targeting senescent cells in the setting of HIV-1 infection remains an important unanswered 

question.

Knowledge gaps and key questions

There are significant gaps in knowledge regarding the nature of immune senescence in 

treated HIV-1 infection and its management. They include, but are not limited to, the 

following:

1. How does the ‘accelerated aging’ phenotype of treated HIV-1 infection differ 

from pathologic aging at a mechanistic level? Will this change as a younger 

cohort of PLWH who initiated ART earlier in the disease course and did not 

develop AIDS undergo chronologic aging?

2. While ART clearly diminishes the immune activation induced by viral 

replication, there are concerning signals that there may be a cumulative pro-

inflammatory contribution of chronic therapy. Are there specific drug classes that 

potentiate this risk more than others? Does the weight gain associated with 

integrase-inhibitor-based ART increase the risk of metabolic and cardiovascular 

disease? Will the use of recently-approved two-drug regimens alter the chronic 

inflammation attributable to ART relative to current three- or four-drug 

regimens?

3. Are HIV-1 infected macrophages driving neuro-inflammation that results in 

HAND? If so, how can this be addressed?

4. The activity of senolytics have largely been tested in non-immune cells, 

including pre-adipocytes and fibroblasts. Do immune cells undergoing 

senescence have the same phenotype as these cells, and which of the senolytics 

discussed above (if any) will be most effective at targeting them?

Conclusion

Despite the suppression of viral replication by ART and consequent improvement in 

mortality, it has become clear that immunologic dysregulation persists in the form of chronic 

immune activation and immunologic aging in HIV-1-infected, ART-treated individuals. The 
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importance of developing strategies to address HIV-1 persistence, immunosenescence and 

serious pathophysiologic consequences including cardiovascular and metabolic diseases, 

non-AIDS-related malignancies and frailty in treated HIV-1 infection are underscored by the 

chronologic aging of the HIV-1 infected population in the United States. The rapidly 

advancing field of senotherapeutics holds great promise for a multitude of aging-related 

disease states including chronic treated HIV-1 infection.
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Key points

• The majority of PLWH are over age 50, exhibit advanced immunologic aging, 

and are predisposed to age-associated illness

• Cellular senescence is a major driver of pathologic aging

• In vivo and in vitro evidence has identified a contributory role of HIV-1 in 

cellular senescence

• Multiple strategies are being explored to pharmacologically target senescent 

cells for clearance

• Senotherapeutics improve health- and life-span in mouse models of disease 

and early trials in human patients, and hold great promise for treatment of 

HIV-1 immune senescence
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Figure 1. Mechanisms and Clinical Consequences of HIV-1-Associated Inflammation
Untreated HIV-1 infection is characterized by profound immune activation (shown in red 

above), triggered by ongoing viral replication and exacerbated by microbial translocation 

and co-morbid conditions. Immune activation accelerates T cell loss, resulting in progression 

to AIDS. ART eliminates this feed-forward system, however low-level inflammation and 

immune exhaustion persist and result in a phenotype of immune senescence and increased 

risk of aging-related illnesses (shown in blue above).
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Table 1:

Investigational Senotherapeutics

Drug Senotherapeutic 
Behavior Mechanism(s) of Action Clinical status

Tested in 
HIV-1 

infection?
References

Dasatinib Senolytic Broadly active TKI FDA approved for CML Yes 143, 178, 179

Fisetin Senolytic PI3K/AKT/mTOR 
antagonist Experimental No 140

Quercetin Senolytic PI3K antagonist Experimental No 136, 143

Fenofibrate Senolytic PPARα agonist FDA approved for 
hyperlipidemia Yes 122, 123

Navitoclax 
(ABT-263) Senolytic BCL-2 antagonist Experimental No 121, 146

A1331852 Senolytic BCL-XL antagonist Experimental No 141

A1155463 Senolytic BCL-XL antagonist Experimental No 141

Venetoclax 
(ABT-199) Senolytic BCL-2 antagonist FDA approved for CLL Yes 150, 151

Piperlongumine Senolytic GSTP1 antagonist Experimental No 124, 125

Tanespimycin (17-
AAG) Senolytic HSP90 inhibitor Experimental Yes 126–128

Radicilol Senolytic HSP90 inhibitor Experimental No 129

Geldanamycin Senolytic HSP90 inhibitor Experimental Yes 129, 130

FOXO4-
related peptide Senolytic FOXO4 antagonist Experimental No 131

UBX0101 Senolytic MDM2/p53 antagonist Experimental No 132

Panobinostat Senolytic HDAC inhibitor FDA approved for 
multiple myeloma Yes 172, 173

Metformin Senolytic/
Senomorphic

AMPK agonist and 
glycerophosphate 

dehydrogenase (mGPD) 
inhibitor

FDA approved for T2DM No 138

NBD Peptide Senomorphic IKK inhibitor Experimental No 133

Rapamycin Senomorphic mTOR inhibitor FDA approved for immune 
suppression Yes 158, 159

Everolimus Senomorphic mTOR inhibitor FDA approved for immune 
suppression Yes 158

Ruxolitinib Senomorphic JAK1/JAK2 inhibitor
FDA approved for 
myeloproliferative 

diseases
Yes 162, 164

KU-60019 Senomorphic ATM Kinase inhibitor Experimental No 134

Mmu-miR-291a-3p Senomorphic TGFRB2 antagonist Experimental No 135
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